
CSCI 210: Computer Architecture

Lecture 11: Procedures

Stephen Checkoway

Slides from Cynthia Taylor

1

Announcements

• Problem Set 3 Due Friday

• Lab 2 due Monday

CS History: The Subroutine
• A group of instructions we can re-run as a unit
• Conceived of by Alan Turing in 1945,

independently implemented by Kay McNulty and
others on the ENIAC in 1947, formally developed
by Maurice Wilkes, David Wheeler, and Stanley
Gill in 1952.

• In early computers, loaded as strips of paper
tape or collections of punch cards that would be
reinserted into the machine

• Later developed as macros, pieces of code the
assembler would copy into multiple places
during assembly

Recall from Last Class

• Fetch/Decode/Execute cycle
– IR = Memory[PC]
– PC = PC + 4

• Branch instructions change PC value conditionally
– beq, bne

– Used with slt

• Jump instructions always change PC value
– j, jr

Jump

• j label

– Go directly to the label (i.e. PC = label)

• jr register

– Go directly to the address specified in the register

if(X == 0)

 X = Y + Z;

else

 X = Z + Z;

C Code

Assuming X, Y, and Z are
integers in registers $t0,
$t1, and $t2, respectively,
which are the equivalent
assembly instructions?

bne $t0, $zero, false
 add $t0, $t1, $t2
false: add $t0, $t2, $t2

A

bne $t0, $zero, false
 add $t0, $t1, $t2
 j endif
false: add $t0, $t2, $t2
endif:

B

bne $t0, $zero, false
 j endif
 add $t0, $t1, $t2
false: add $t0, $t2, $t2
endif:

C

D – None of the above

while (i < 10){

 i = i + 1;

}

C Code

Assume i is in $t0. What is
the equivalent assembly?

w: slti $t2, $t0, 10
 beq $t2, $zero, end
 addi $t0, $t0, 1
 j w
end:

A B C

D – More than one of these

w: slti $t2, $t0, 10
 beq $t2, $zero, end
 addi $t0, $t0, 1
end:

slti $t2, $t0, 10
w: beq $t2, $zero, end
 addi $t0, $t0, 1
 j w
end:

E – None of these

slti rd, rs, imm
if (rs < imm) rd = 1; else rd = 0;

How to access an array in a for loop

• Can’t programmatically change the offset

• Need to change the base address instead

• Add 4 to the base address every time you want to move up an
element of the array

for (i=0; i < 10; i++){

 A[i] = 0;

}

 add $s0, $zero, $zero

 addi $s1, $zero, 40

Loop: beq $s0, $s1, End

 add $s4, $s3, $s0

 sw $zero, 0($s4)

 addi $s0, $s0, 4

 j Loop

End:

*Assume base address of A is in $s3

for (i = 0; i < 10; i++){

 A[i+1] = A[i];

}

C Code

Assume the base address
of A is in $t0, and i is in
$t1. Each element of A is 4
bytes. What is the
equivalent assembly?

addi $t2, $zero, 10
 add $t1, $zero, $zero
for: bne $t1, $t2, end
 lw $t3, $t1($t0)
 addi $t1, $t1, 1
 sw $t3, $t1($t0)
 j for
end:

A B C

D – More than one of these

addi $t2, $zero, 40
 add $t1, $zero, $zero
for: beq $t1, $t2, end
 add $t4, $t0, $t1
 lw $t3, 0($t4)
 addi $t1, $t1, 4
 add $t4, $t0, $t1
 sw $t3, 0($t4)
 j for
end:

addi $t2, $zero, 10
 add $t1, $zero, $zero
 bne $t1, $t2, end
 add $t4, $t0, $t1
 lw $t3, 0($t4)
 addi $t1, $t1, 1
 add $t4, $t0, $t1
 sw $t3, 0($t4)
end:

E – None of these

Jump and Link

 jal label

– Address of following instruction put in $ra

– Jumps to target address given by label

12

What is the most common use of a jal instruction and
why?

Most
common use

Best answer

A Procedure
call

Jal stores the next instruction in your current
function so the called function knows where to
return to.

B Procedure
call

Jal enables a long jump and most procedures are a
fairly long distance away

C If/else Jal lets you go to the if while storing pc+4 (else)

D If/else Jal enables a long branch and most if statements
are a fairly long distance away

E None of the above

Procedure Call Instructions

• Procedure call: jump and link

 jal ProcedureLabel

– Address of following instruction put in $ra

– Jumps to target address

• Procedure return: jump register

 jr $ra

– Copies $ra to program counter

Recall: Procedures

int addTimes3(int x, int y){

 int w = y * 3;

 int z = x + w;

 return z;

}

Procedure Calling

1. Place arguments in registers: $a0, $a1, $a2, $a3

2. Transfer control to procedure: jal label

3. Acquire storage for procedure: use the stack

4. Perform procedure’s operations

5. Place result in register for caller: $v0, $v1

6. Return to place of call: jr $ra

What does a procedure call look like?

addten:

 addi $v0, $a0, 10

 jr $ra

 …

 move $a0, $s2

 jal addTen

 # Now v0 holds $s2 + 10

 …

What is the problem with this code

move $a0, $t2

move $a1, $t3

jal add

move $t4, $v0

sub $t4, $t4, $t2

#add $a0,$a1

add: add $t2, $a0, $a1

 move $v0, $t2

 jr $ra

A. Not adding correctly

B. $t2 is overwritten in add

C. We are not saving the return
address before the procedure

D.There is nothing wrong with this
code

Register values across function calls

• “Preserved” registers

– You can trust them to persist past function calls

• Functions must ensure not to change them or to restore them if they do

• Not “Preserved” registers

– Contents can be changed when you call a function

• If you need the value, you need to put it somewhere else

Aside: MIPS Register Convention
Name Register

Number
Usage Preserve

on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments no

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

Programmer’s
responsibility

“Spill” and “Fill”

• Spill register to memory
– Whenever you have too many variables to keep in registers

– Whenever you call a method and need values in non-preserved
registers

– Whenever you want to use a preserved register and need to keep a
copy

• Fill registers from memory
– To restore previously spilled registers

Memory Layout

• Text: program code

• Static data: global variables

– e.g., static variables in C, constant arrays and
strings

• Dynamic data: heap

– E.g., malloc in C, new in Java

• Stack: “automatic” storage for procedures

Before and after a function

sw $t0, 4($sp)

jal myFunction

lw $t0, 4($sp)

22

Assembly Code

Which register is being

spilled and filled?

A. $ra

B. $t0

C. $sp

D. No register is

spilled/filled

E. No need to spill/fill any

registers

Stack

• Stack of stack frames

– One per pending procedure

• Each stack frame stores

– Where to return to

– Local variables

– Arguments for called functions (if needed)

• Stack pointer points to last record

return address

local var 1
...
local var n

return address

local var 1
...
local var n

...

SP

Process Stack

...

main () {

 int i = foo();

 print(i);

 return 0;

}

foo () {

 int n = 10;

 n = bar(n);

 return n;

}

bar(int n) {

 return n + 2;

}

SP

Process Stack

...

return address

int n

main () {

 int i = foo();

 print(i);

 return 0;

}

foo () {

 int n = 10;

 n = bar(n);

 return n;

}

bar(int n) {

 return n + 2;

}

SP

Process Stack

26

...

return address

int n = 10

main () {

 int i = foo();

 print(i);

 return 0;

}

foo () {

 int n = 10;

 n = bar(n);

 return n;

}

bar(int n) {

 return n + 2;

}

SP

Process Stack

...

return address

int n = 10

return address

int n = 10

main () {

 int i = foo();

 print(i);

 return 0;

}

foo () {

 int n = 10;

 n = bar(n);

 return n;

}

bar(int n) {

 return n + 2;

}

SP

Process Stack

...

return address

int n = 10

return address

int n = 10

main () {

 int i = foo();

 print(i);

 return 0;

}

foo () {

 int n = 10;

 n = bar(n);

 return n;

}

bar(int n) {

 return n + 2;

}

SP

Process Stack

...

return address

int n = 12

main () {

 int i = foo();

 print(i);

 return 0;

}

foo () {

 int n = 10;

 n = bar(n);

 return n;

}

bar(int n) {

 return n + 2;

}

SP

Process Stack

30

...

main () {

 int i = foo();

 print(i);

 return 0;

}

foo () {

 int n = 10;

 n = bar(n);

 return n;

}

bar(int n) {

 return n + 2;

}

SP

To add a variable to the stack in MIPS

• Change the stack pointer $sp to create room on the stack for
the variable

• Use sw to store the variable on the stack

• The stack pointer in MIPS points after the last stack slot so the
valid slots to access are 4($sp), 8($sp), 12($sp), etc.

Stack
If you wish to push an integer variable to the top of the stack, which of the
following is true:
A. You should decrement the stack pointer ($sp) by 1

B. You should decrement $sp by 4

C. You should increment $sp by 1

D. You should increment $sp by 4

E. None of the above

Manipulating the Stack

• To add the contents of $s0 to the stack

– addi $sp, $sp, -4
sw $s0, 4($sp) ; The stack pointer points after the last stack slot

• To get the value back from the stack

– lw $s0, 4($sp)

• To “erase” the value from the stack

– addi $sp, $sp, 4

Think-Pair-Share: Why do we spill and fill the return
address when we call a function from inside another

function?

func1:

 . . .

 addi $sp, $sp, -4

 sw $ra, 4($sp)

 jal func2

 lw $ra, 4($sp)

 addi $sp, $sp, 4

 . . .

 jr $ra

A better approach

• In the function “prologue,” reserve space on the stack for all of
the variables and saved registers you’ll need

• Use sw/lw to spill and fill as needed to the space reserved in
the prologue

• In the function “epilogue,” restore any saved registers you
need and update the stack pointer

Complete example

foo:
 addi $sp, $sp, -12 # Reserve space for 3 vars
 sw $ra, 12($sp) # Stores (spills) $ra, return address
 sw $s0, 8($sp) # Stores (spills) s0, callee-saved reg
 …
 li $s0, 25 # Set s0 to 25
 sw $t3, 4($sp) # Stores (spills) t3, caller-saved reg
 add $a0, $t1, $t3
 jal myFunction
 lw $t3, 4($sp) # Restores (fills) t3
 …
 lw $s0, 8($sp) # Restores (fills) s0, must restore
 lw $ra, 12($sp) # Restores (fills) $ra, return address
 addi $sp, $sp, 12 # Restore the stack pointer
 jr $ra # Return

Reading

• Next lecture: More stack!

• Problem Set 3 due Friday

• Lab 2 due Monday

50

	Slide 1: CSCI 210: Computer Architecture Lecture 11: Procedures
	Slide 2: Announcements
	Slide 3: CS History: The Subroutine
	Slide 4: Recall from Last Class
	Slide 5: Jump
	Slide 6
	Slide 7
	Slide 8: How to access an array in a for loop
	Slide 9
	Slide 10
	Slide 11: Jump and Link
	Slide 12
	Slide 13: Procedure Call Instructions
	Slide 14: Recall: Procedures
	Slide 15: Procedure Calling
	Slide 16: What does a procedure call look like?
	Slide 17: What is the problem with this code
	Slide 18: Register values across function calls
	Slide 19: Aside: MIPS Register Convention
	Slide 20: “Spill” and “Fill”
	Slide 21: Memory Layout
	Slide 22: Before and after a function
	Slide 23: Stack
	Slide 24: Process Stack
	Slide 25: Process Stack
	Slide 26: Process Stack
	Slide 27: Process Stack
	Slide 28: Process Stack
	Slide 29: Process Stack
	Slide 30: Process Stack
	Slide 31: To add a variable to the stack in MIPS
	Slide 32: Stack
	Slide 33: Manipulating the Stack
	Slide 34: Think-Pair-Share: Why do we spill and fill the return address when we call a function from inside another function?
	Slide 35: A better approach
	Slide 36: Complete example
	Slide 50: Reading

